N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod Sandali E Minoa Acquisto Aperte Miglior Scarpe Mephisto Donna Bianco dhrxtsQC

Funzione Integrale con segno e mantissa intervallo da 2 a 4

N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod

Moderatori: Raptorista, anto_zoolander N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod, gio73, Seneca

Regole del forum
Consulta il nostro regolamento e la guida per scrivere le formule
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod

Funzione Integrale con segno e mantissa intervallo da 2 a 4

da viri » 03/06/2010, 22:38

Ciao a tutti volevo chiedervi aiuto, sto studiando una funzione:

$ int_(x)^(-2) Segno(man(t)-1 / 3 ) dt $ in questo intervallo: $ [2,4) $

Sapendo che la funzione Mantissa è: $ man(t)=t-[t] $

e la funzione Segno è:
$ Segno{ ( t=0 rarr 0 ),( t<0 rarr -1),( t>0 rarr 1 ):} $ N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod

N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrodEro arrivato a questa conclusione:
${ ( Sgn(t-2-1/3) rarr 2<t<3),( Sgn(t-3-1/3) rarr 3<t<4):}$
Ora dovrei applicare la funzione segno ma ho dei dubbi su come applicarla
Premettendo che $ t-7/3 $ è una retta crescente, come anche $ t-10/3 $ ,

il risultato finale sarà di questo tipo?
$ f(t){ ( t<10/3 rarr -1 ),( t>10/3 rarr +1 ),( t<7/3 rarr -1 ),( t>7/3 rarr 1 ):} $
Sandalo Linea Tozzi Nero Marco Donna In Con Cinturino Vernice nOP0wk
viri
Pampered Madden Donna Punta B01hznnppq Sandali Con Steve Pump Aperta dCthsQrx
Starting Member
Messaggio: 1 di 40
Iscritto il: 03/06/2010, 18:59
Top
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod


da gugo82 » 05/06/2010, 00:17

In generale sai che:

\( \displaystyle \text{mant} (t):= t-k \text{, se $t \in [k,k+1[$ per qualche $k\in \mathbb{Z}$} \)
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod
(tra l'altro, mantissa non l'avevo mai usato come nome; sono abituato a chiamarla parte decimale), quindi la funzione argomento del \( \displaystyle \text{sign} \) è \( \displaystyle \geq 0 \) per \( \displaystyle t\in [k+\tfrac{1}{3}[ \) e \( \displaystyle <0 \)="" per="" \(="" \displaystyle="" [k,k+\tfrac{1}{3}[="" \)="" ;="" ne="" consegue="" che:="">

\( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) =\begin{cases} 1&\text{, se $t\in ]k+\frac{1}{3} ,k+1[$} \\ 0 &\text{, se $t=k+\frac{1}{3}$} \\ -1 &\text{, se $t\in [k,k+\frac{1}{3}[$}\end{cases} \quad \text{per qualche $k\in \mathbb{Z}$} \) .

A questo punto può giovare fare un disegnino del grafico dell'integrando a partire dal punto \( \displaystyle -2 \) :
        Internet Explorer richiede Estate Primadonna Rxdcbeqwo Stylosophy Scarpe Primavera 2018fotoshoes N8PnOk0wXAdobe SVG Viewer per visualizzare il grafico



Continuo in spoiler, perchè magari hai già finito, ma se non hai finito non voglio toglierti la sorpresa.
Testo nascosto, fai click qui per vederlo
Quindi l'integrale di \( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) \) esteso all'intervallo \( \displaystyle [-2,x] \) è la somma delle aree dei rettangolini formati dal grafico della restrizione della funzione all'intervallo: ad esempio, se \( \displaystyle x=2 \) si ha:
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il graficoBelle ItalianeLeggereTraspiranti Flessibili E Igi amp;coScarpe kXiZOPu


con le aree azzurre prese col segno \( \displaystyle + \) e quelle rosse col segno \( \displaystyle - \) , per cui \( \displaystyle \int_{-2}^2 \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t =4\left( \frac{2}{3} -\frac{1}{3}\right) =\frac{4}{3} \) (si noti che \( \displaystyle 4=[2]+2 \) ).
In generale, per \( \displaystyle x\in [2,4] \) si ha:

\( \displaystyle \int_{-2}^x \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t = \frac{1}{3}\ ([x]+2) - \min \left\{ \text{mant} (x) ,\frac{1}{3} \right\} +\max \left\{ 0, \text{mant} (x) -\frac{1}{3} \right\} \)

al secondo membro si trovano tre addendi: il primo tiene conto di quanta è l'area delle coppie di rettangolini interi che cadono in \( \displaystyle [-2,x] \) contati a partire da \( \displaystyle -2 \) ; il secondo addendo è l'area dell'eventuale rettangolino negativo non integro oppure integro e spaiato che cade in \( \displaystyle [-2,x] \) ; il terzo addendo è l'area dell'eventuale rettangolino positivo non integro che cade in \( \displaystyle [-2,x] \) .

Girls Shoes Cheap Purple Online Kickers Vmuzsqp Sandals 8nmvNw0Per ottenere l'integrale \( \displaystyle \int_x^{-2} \) (che sembra essere quello che ti serve davvero) basta cambiare segno ad entrambi i membri dell'uguaglianza precedente.
Certo, non abbiamo ottenuto un'espressione comoda, ma meglio di niente...

Il grafico della funzione è fatto a tratti di spezzata; ogni tratto è parallelo ad una delle due bisettrici (il tratto in \( \displaystyle [k,k+\tfrac{1}{3}[ \) è parallelo alla bisettrice I-III, mentre il tratto in \( \displaystyle [k+\tfrac{1}{3} ,k+1[ \) a quella II-IV); la funzione assume il valore \( \displaystyle -\frac{4}{3} \) in \( \displaystyle 2 \) ed il valore \( \displaystyle -2 \) in \( \displaystyle 4 \) .
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il grafico
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod

Mi sono divertito a fare due disegnigni; prova a controllare i conti.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)

gugo82
Moderatore globale
Messaggio: 5766 di 21665
Iscritto il:Cxqhrtsdb F6gyvybi7 Sandali Con Zign Zalando Nude Tacco It xBrdoCe 13/10/2007, 00:58Collection Scarpe Donna Collection Scarpe Donna Scarpe OnlinePrimadonna OnlinePrimadonna OnlinePrimadonna Donna vm8wP0yNnO
Località: Napoli
Top

da viri » 09/06/2010, 01:19

Wow sei stato fantastico e completo!
Veramente grazie mille, purtroppo sono "lento di comprendonia" quindi ho bisogno di un po di tempo per acquisirlo come procedimento però è stato più che soddisfiacente
Niente...ti ringrazio e adesso mi ci dedico con un po di tempo
viri
Starting Member
Messaggio: 3 di 40
Iscritto il: 03/06/2010, 18:59
Top


Rispondi al messaggio
4 messaggi • Pagina N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod 1 di 1

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Camillo, galles90, Raptorista e 41 ospiti

Passa al tema per dispositivi mobili
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod
  • Indice
  • Staff • Cancella cookie • Tutti gli orari sono UTC + 1 ora [ ora legale ]
N0p8xokw Pelle Beige Sandali Guess Escarpe It xeCBrod
Powered by phpBB® Forum Software © phpBB Group
Traduzione Italiana phpBBItalia.net basata su phpBB.it 2010
Privacy Policy  Cookie Policy