Funzione Integrale con segno e mantissa intervallo da 2 a 4

Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0

Moderatori: Raptorista, anto_zoolander Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0, gio73, Seneca

Regole del forum
Consulta il nostro regolamento e la guida per scrivere le formule
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0

Funzione Integrale con segno e mantissa intervallo da 2 a 4

da viri » 03/06/2010, 22:38

Ciao a tutti volevo chiedervi aiuto, sto studiando una funzione:

$ int_(x)^(-2) Segno(man(t)-1 / 3 ) dt $ in questo intervallo: $ [2,4) $

Sapendo che la funzione Mantissa è: $ man(t)=t-[t] $

e la funzione Segno è:
$ Segno{ ( t=0 rarr 0 ),( t<0 rarr -1),( t>0 rarr 1 ):} $ Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0

Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0Ero arrivato a questa conclusione:
${ ( Sgn(t-2-1/3) rarr 2<t<3),( Sgn(t-3-1/3) rarr 3<t<4):}$
Ora dovrei applicare la funzione segno ma ho dei dubbi su come applicarla
Premettendo che $ t-7/3 $ è una retta crescente, come anche $ t-10/3 $ ,

il risultato finale sarà di questo tipo?
$ f(t){ ( t<10/3 rarr -1 ),( t>10/3 rarr +1 ),( t<7/3 rarr -1 ),( t>7/3 rarr 1 ):} $
Toe Sandals Flot Flower Detail Post Dream Black Fly Women's Wn83183 1FJTKc3ul
viri
Sandali Slide In Donna Vendita Kors Michael Oro Sawyer Online rCxBedoW
Starting Member
Messaggio: 1 di 40
Iscritto il: 03/06/2010, 18:59
Top
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0

da viri » 04/06/2010, 22:42

qualcuno mi puo' rispondere...quanto meno confermarmi o smentire....
viriZeppe Nero Italiana Sconto Donna Moda Miglior Traforate Studio lFJKcT1
Starting Member
Messaggio: 2 di 40
Iscritto il: 03/06/2010, 18:59
Donna Le Nero 11395346qc Gshyodc Infradito Silla UpqzGMjSLV
Top

da gugo82 » 05/06/2010, 00:17

In generale sai che:

\( \displaystyle \text{mant} (t):= t-k \text{, se $t \in [k,k+1[$ per qualche $k\in \mathbb{Z}$} \)
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0
(tra l'altro, mantissa non l'avevo mai usato come nome; sono abituato a chiamarla parte decimale), quindi la funzione argomento del \( \displaystyle \text{sign} \) è \( \displaystyle \geq 0 \) per \( \displaystyle t\in [k+\tfrac{1}{3}[ \) e \( \displaystyle <0 \)="" per="" \(="" \displaystyle="" [k,k+\tfrac{1}{3}[="" \)="" ;="" ne="" consegue="" che:="">

\( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) =\begin{cases} 1&\text{, se $t\in ]k+\frac{1}{3} ,k+1[$} \\ 0 &\text{, se $t=k+\frac{1}{3}$} \\ -1 &\text{, se $t\in [k,k+\frac{1}{3}[$}\end{cases} \quad \text{per qualche $k\in \mathbb{Z}$} \) .

A questo punto può giovare fare un disegnino del grafico dell'integrando a partire dal punto \( \displaystyle -2 \) :



Continuo in spoiler, perchè magari hai già finito, ma se non hai finito non voglio toglierti la sorpresa.
Testo nascosto, fai click qui per vederlo
Quindi l'integrale di \( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) \) esteso all'intervallo \( \displaystyle [-2,x] \) è la somma delle aree dei rettangolini formati dal grafico della restrizione della funzione all'intervallo: ad esempio, se \( \displaystyle x=2 \) si ha:
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il graficoInfradito ShearlingUgg In E Sandali Holly Pelle Kids wOPkn0


con le aree azzurre prese col segno \( \displaystyle + \) e quelle rosse col segno \( \displaystyle - \) , per cui \( \displaystyle \int_{-2}^2 \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t =4\left( \frac{2}{3} -\frac{1}{3}\right) =\frac{4}{3} \) (si noti che \( \displaystyle 4=[2]+2 \) ).
In generale, per \( \displaystyle x\in [2,4] \) si ha:

\( \displaystyle \int_{-2}^x \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t = \frac{1}{3}\ ([x]+2) - \min \left\{ \text{mant} (x) ,\frac{1}{3} \right\} +\max \left\{ 0, \text{mant} (x) -\frac{1}{3} \right\} \)

al secondo membro si trovano tre addendi: il primo tiene conto di quanta è l'area delle coppie di rettangolini interi che cadono in \( \displaystyle [-2,x] \) contati a partire da \( \displaystyle -2 \) ; il secondo addendo è l'area dell'eventuale rettangolino negativo non integro oppure integro e spaiato che cade in \( \displaystyle [-2,x] \) ; il terzo addendo è l'area dell'eventuale rettangolino positivo non integro che cade in \( \displaystyle [-2,x] \) .

Tacco Donna 1148755 Heidi Scarpe Asos Con Sandali gvfYbyI76Per ottenere l'integrale \( \displaystyle \int_x^{-2} \) (che sembra essere quello che ti serve davvero) basta cambiare segno ad entrambi i membri dell'uguaglianza precedente.
Certo, non abbiamo ottenuto un'espressione comoda, ma meglio di niente...

Il grafico della funzione è fatto a tratti di spezzata; ogni tratto è parallelo ad una delle due bisettrici (il tratto in \( \displaystyle [k,k+\tfrac{1}{3}[ \) è parallelo alla bisettrice I-III, mentre il tratto in \( \displaystyle [k+\tfrac{1}{3} ,k+1[ \) a quella II-IV); la funzione assume il valore \( \displaystyle -\frac{4}{3} \) in \( \displaystyle 2 \) ed il valore \( \displaystyle -2 \) in \( \displaystyle 4 \) .
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il grafico
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0

Mi sono divertito a fare due disegnigni; prova a controllare i conti.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)

gugo82
Moderatore globale
Messaggio: 5766 di 21665
Iscritto il:Vendita Uomo Ul1kjc3tf Sandali Blu Nike Kawa Shower Online LSGjqpUVMz 13/10/2007, 00:58Janetamp; Janetamp; Zeppa Nero Nero Sandalo Janetamp; Sandalo Sport Sandalo Zeppa Sport Zeppa 5j4LA3R
Località: Napoli
Top

da viri » 09/06/2010, 01:19

Wow sei stato fantastico e completo!
Veramente grazie mille, purtroppo sono "lento di comprendonia" quindi ho bisogno di un po di tempo per acquisirlo come procedimento però è stato più che soddisfiacente
Niente...ti ringrazio e adesso mi ci dedico con un po di tempo
viri
Starting Member
Messaggio: 3 di 40
Iscritto il: 03/06/2010, 18:59
Top


Rispondi al messaggio
4 messaggi • Pagina Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0 1 di 1

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Camillo, galles90, Raptorista e 41 ospiti

Passa al tema per dispositivi mobili
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0
  • Indice
  • Staff • Cancella cookie • Tutti gli orari sono UTC + 1 ora [ ora legale ]
Online Donna Oixukpz Blu Inblu Sandali wOkX8nP0
Powered by phpBB® Forum Software © phpBB Group
Traduzione Italiana phpBBItalia.net basata su phpBB.it 2010
Privacy Policy  Cookie Policy