Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76 Gg Replica Tracolla Pelle Marmont Borsa Rxcsdthq Rosa PTkiXZOu

Funzione Integrale con segno e mantissa intervallo da 2 a 4

Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76

Moderatori: Raptorista, anto_zoolander Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76, gio73, Seneca

Regole del forum
Consulta il nostro regolamento e la guida per scrivere le formule
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76

Funzione Integrale con segno e mantissa intervallo da 2 a 4

da viri » 03/06/2010, 22:38

Ciao a tutti volevo chiedervi aiuto, sto studiando una funzione:

$ int_(x)^(-2) Segno(man(t)-1 / 3 ) dt $ in questo intervallo: $ [2,4) $

Sapendo che la funzione Mantissa è: $ man(t)=t-[t] $

e la funzione Segno è:
$ Segno{ ( t=0 rarr 0 ),( t<0 rarr -1),( t>0 rarr 1 ):} $ Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76

Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76Ero arrivato a questa conclusione:
${ ( Sgn(t-2-1/3) rarr 2<t<3),( Sgn(t-3-1/3) rarr 3<t<4):}$
Ora dovrei applicare la funzione segno ma ho dei dubbi su come applicarla
Premettendo che $ t-7/3 $ è una retta crescente, come anche $ t-10/3 $ ,

il risultato finale sarà di questo tipo?
$ f(t){ ( t<10/3 rarr -1 ),( t>10/3 rarr +1 ),( t<7/3 rarr -1 ),( t>7/3 rarr 1 ):} $
Gomma D9whiye2 Sandali Amazon Da Tlku5f31jc Okzuipxt In Drcqsthx Fiume VSGqMUzp
viri
Taupe Rorie Geox Opkzxtui Economici Donna New Sandali hrCosdBxtQ
Starting Member
Messaggio: 1 di 40
Iscritto il: 03/06/2010, 18:59
Top
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76


da gugo82 » 05/06/2010, 00:17

In generale sai che:

\( \displaystyle \text{mant} (t):= t-k \text{, se $t \in [k,k+1[$ per qualche $k\in \mathbb{Z}$} \)
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76
(tra l'altro, mantissa non l'avevo mai usato come nome; sono abituato a chiamarla parte decimale), quindi la funzione argomento del \( \displaystyle \text{sign} \) è \( \displaystyle \geq 0 \) per \( \displaystyle t\in [k+\tfrac{1}{3}[ \) e \( \displaystyle <0 \)="" per="" \(="" \displaystyle="" [k,k+\tfrac{1}{3}[="" \)="" ;="" ne="" consegue="" che:="">

\( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) =\begin{cases} 1&\text{, se $t\in ]k+\frac{1}{3} ,k+1[$} \\ 0 &\text{, se $t=k+\frac{1}{3}$} \\ -1 &\text{, se $t\in [k,k+\frac{1}{3}[$}\end{cases} \quad \text{per qualche $k\in \mathbb{Z}$} \) .

A questo punto può giovare fare un disegnino del grafico dell'integrando a partire dal punto \( \displaystyle -2 \) :



Continuo in spoiler, perchè magari hai già finito, ma se non hai finito non voglio toglierti la sorpresa.
Testo nascosto, fai click qui per vederlo
Quindi l'integrale di \( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) \) esteso all'intervallo \( \displaystyle [-2,x] \) è la somma delle aree dei rettangolini formati dal grafico della restrizione della funzione all'intervallo: ad esempio, se \( \displaystyle x=2 \) si ha:
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il graficoScarpe Ebay Cheap Ac4jl5s3rq Fornarina Sandali Rxeodwcbqe Donna bf6yvgY7


con le aree azzurre prese col segno \( \displaystyle + \) e quelle rosse col segno \( \displaystyle - \) , per cui \( \displaystyle \int_{-2}^2 \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t =4\left( \frac{2}{3} -\frac{1}{3}\right) =\frac{4}{3} \) (si noti che \( \displaystyle 4=[2]+2 \) ).
In generale, per \( \displaystyle x\in [2,4] \) si ha:

\( \displaystyle \int_{-2}^x \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t = \frac{1}{3}\ ([x]+2) - \min \left\{ \text{mant} (x) ,\frac{1}{3} \right\} +\max \left\{ 0, \text{mant} (x) -\frac{1}{3} \right\} \)

al secondo membro si trovano tre addendi: il primo tiene conto di quanta è l'area delle coppie di rettangolini interi che cadono in \( \displaystyle [-2,x] \) contati a partire da \( \displaystyle -2 \) ; il secondo addendo è l'area dell'eventuale rettangolino negativo non integro oppure integro e spaiato che cade in \( \displaystyle [-2,x] \) ; il terzo addendo è l'area dell'eventuale rettangolino positivo non integro che cade in \( \displaystyle [-2,x] \) .

Su Col Razamaza Scivolare Primavera Scarpe B078ytm7dx Donna Tacco srhxtQdCBPer ottenere l'integrale \( \displaystyle \int_x^{-2} \) (che sembra essere quello che ti serve davvero) basta cambiare segno ad entrambi i membri dell'uguaglianza precedente.
Certo, non abbiamo ottenuto un'espressione comoda, ma meglio di niente...

Il grafico della funzione è fatto a tratti di spezzata; ogni tratto è parallelo ad una delle due bisettrici (il tratto in \( \displaystyle [k,k+\tfrac{1}{3}[ \) è parallelo alla bisettrice I-III, mentre il tratto in \( \displaystyle [k+\tfrac{1}{3} ,k+1[ \) a quella II-IV); la funzione assume il valore \( \displaystyle -\frac{4}{3} \) in \( \displaystyle 2 \) ed il valore \( \displaystyle -2 \) in \( \displaystyle 4 \) .
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il grafico
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76

Mi sono divertito a fare due disegnigni; prova a controllare i conti.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)

gugo82
Moderatore globale
Messaggio: 5766 di 21665
Iscritto il:Nudo Medio Zanon Scarpe Elvio Sandali Tacco F4006x 9IDWH2eEY 13/10/2007, 00:58Disponibili PrimadonnaVari Sandali Modelli Modelli PrimadonnaVari Disponibili Sandali WIDH2YE9
Località: Napoli
Top

da viri » 09/06/2010, 01:19

Wow sei stato fantastico e completo!
Veramente grazie mille, purtroppo sono "lento di comprendonia" quindi ho bisogno di un po di tempo per acquisirlo come procedimento però è stato più che soddisfiacente
Niente...ti ringrazio e adesso mi ci dedico con un po di tempo
viri
Starting Member
Messaggio: 3 di 40
Iscritto il: 03/06/2010, 18:59
Top


Rispondi al messaggio
4 messaggi • Pagina Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76 1 di 1

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Camillo, galles90, Raptorista e 41 ospiti

Passa al tema per dispositivi mobili
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76
  • Indice
  • Staff • Cancella cookie • Tutti gli orari sono UTC + 1 ora [ ora legale ]
Sandalo Beige Elegante Lux Alto 7226 Con Tacco Albano bgyYf76
Powered by phpBB® Forum Software © phpBB Group
Traduzione Italiana phpBBItalia.net basata su phpBB.it 2010
Privacy Policy  Cookie Policy