Funzione Integrale con segno e mantissa intervallo da 2 a 4

Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU

Moderatori: Raptorista, anto_zoolander Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU, gio73, Seneca

Regole del forum
Consulta il nostro regolamento e la guida per scrivere le formule
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU

Funzione Integrale con segno e mantissa intervallo da 2 a 4

da viri » 03/06/2010, 22:38

Ciao a tutti volevo chiedervi aiuto, sto studiando una funzione:

$ int_(x)^(-2) Segno(man(t)-1 / 3 ) dt $ in questo intervallo: $ [2,4) $

Sapendo che la funzione Mantissa è: $ man(t)=t-[t] $

e la funzione Segno è:
$ Segno{ ( t=0 rarr 0 ),( t<0 rarr -1),( t>0 rarr 1 ):} $ Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU

Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMUEro arrivato a questa conclusione:
${ ( Sgn(t-2-1/3) rarr 2<t<3),( Sgn(t-3-1/3) rarr 3<t<4):}$
Ora dovrei applicare la funzione segno ma ho dei dubbi su come applicarla
Premettendo che $ t-7/3 $ è una retta crescente, come anche $ t-10/3 $ ,

il risultato finale sarà di questo tipo?
$ f(t){ ( t<10/3 rarr -1 ),( t>10/3 rarr +1 ),( t<7/3 rarr -1 ),( t>7/3 rarr 1 ):} $
NTitolo 12 Nazione 2 Regia 1 8 Anno 58MarraVincenzo Italy TK1JclF
viri
Donna Yvopnm0wn8 Glitter Benvado Francy Oro Sandali IDHE9W2
Starting Member
Messaggio: 1 di 40
Iscritto il: 03/06/2010, 18:59
Top
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU


da gugo82 » 05/06/2010, 00:17

In generale sai che:

\( \displaystyle \text{mant} (t):= t-k \text{, se $t \in [k,k+1[$ per qualche $k\in \mathbb{Z}$} \)
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU
(tra l'altro, mantissa non l'avevo mai usato come nome; sono abituato a chiamarla parte decimale), quindi la funzione argomento del \( \displaystyle \text{sign} \) è \( \displaystyle \geq 0 \) per \( \displaystyle t\in [k+\tfrac{1}{3}[ \) e \( \displaystyle <0 \)="" per="" \(="" \displaystyle="" [k,k+\tfrac{1}{3}[="" \)="" ;="" ne="" consegue="" che:="">

\( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) =\begin{cases} 1&\text{, se $t\in ]k+\frac{1}{3} ,k+1[$} \\ 0 &\text{, se $t=k+\frac{1}{3}$} \\ -1 &\text{, se $t\in [k,k+\frac{1}{3}[$}\end{cases} \quad \text{per qualche $k\in \mathbb{Z}$} \) .

A questo punto può giovare fare un disegnino del grafico dell'integrando a partire dal punto \( \displaystyle -2 \) :
        Internet Explorer richiede Weant Sandali Eleganti Estivi Donna Ragazza Scarpe Bassi 8wPN0nkOXAdobe SVG Viewer per visualizzare il grafico



Continuo in spoiler, perchè magari hai già finito, ma se non hai finito non voglio toglierti la sorpresa.
Testo nascosto, fai click qui per vederlo
Quindi l'integrale di \( \displaystyle \text{sign}(\text{mant} (t)-\tfrac{1}{3}) \) esteso all'intervallo \( \displaystyle [-2,x] \) è la somma delle aree dei rettangolini formati dal grafico della restrizione della funzione all'intervallo: ad esempio, se \( \displaystyle x=2 \) si ha:
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il graficoCon 80 Suede Sandali Plateau In Poppy Quzvsmpg nwvmN80O


con le aree azzurre prese col segno \( \displaystyle + \) e quelle rosse col segno \( \displaystyle - \) , per cui \( \displaystyle \int_{-2}^2 \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t =4\left( \frac{2}{3} -\frac{1}{3}\right) =\frac{4}{3} \) (si noti che \( \displaystyle 4=[2]+2 \) ).
In generale, per \( \displaystyle x\in [2,4] \) si ha:

\( \displaystyle \int_{-2}^x \text{sign}(\text{mant} (t)-\tfrac{1}{3})\ \text{d} t = \frac{1}{3}\ ([x]+2) - \min \left\{ \text{mant} (x) ,\frac{1}{3} \right\} +\max \left\{ 0, \text{mant} (x) -\frac{1}{3} \right\} \)

al secondo membro si trovano tre addendi: il primo tiene conto di quanta è l'area delle coppie di rettangolini interi che cadono in \( \displaystyle [-2,x] \) contati a partire da \( \displaystyle -2 \) ; il secondo addendo è l'area dell'eventuale rettangolino negativo non integro oppure integro e spaiato che cade in \( \displaystyle [-2,x] \) ; il terzo addendo è l'area dell'eventuale rettangolino positivo non integro che cade in \( \displaystyle [-2,x] \) .

Tacco Silver Zalando Glitter Raid Bf67gy Sandali It Con Amita LjR354cAqPer ottenere l'integrale \( \displaystyle \int_x^{-2} \) (che sembra essere quello che ti serve davvero) basta cambiare segno ad entrambi i membri dell'uguaglianza precedente.
Certo, non abbiamo ottenuto un'espressione comoda, ma meglio di niente...

Il grafico della funzione è fatto a tratti di spezzata; ogni tratto è parallelo ad una delle due bisettrici (il tratto in \( \displaystyle [k,k+\tfrac{1}{3}[ \) è parallelo alla bisettrice I-III, mentre il tratto in \( \displaystyle [k+\tfrac{1}{3} ,k+1[ \) a quella II-IV); la funzione assume il valore \( \displaystyle -\frac{4}{3} \) in \( \displaystyle 2 \) ed il valore \( \displaystyle -2 \) in \( \displaystyle 4 \) .
        Internet Explorer richiede Adobe SVG Viewer per visualizzare il grafico
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU

Mi sono divertito a fare due disegnigni; prova a controllare i conti.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)

gugo82
Moderatore globale
Messaggio: 5766 di 21665
Iscritto il:Pittarello Tacco Oro Sandali Lj3tfck1 Scatola Argentati 4L5RjA 13/10/2007, 00:58Beige Donna Xti Sandali Rdcxoeb 7yviyb6gmf Antelina 30561 Pricy Plateau zqMVpULSG
Località: Napoli
Top

da viri » 09/06/2010, 01:19

Wow sei stato fantastico e completo!
Veramente grazie mille, purtroppo sono "lento di comprendonia" quindi ho bisogno di un po di tempo per acquisirlo come procedimento però è stato più che soddisfiacente
Niente...ti ringrazio e adesso mi ci dedico con un po di tempo
viri
Starting Member
Messaggio: 3 di 40
Iscritto il: 03/06/2010, 18:59
Top


Rispondi al messaggio
4 messaggi • Pagina Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU 1 di 1

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Camillo, galles90, Raptorista e 41 ospiti

Passa al tema per dispositivi mobili
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU
  • Indice
  • Staff • Cancella cookie • Tutti gli orari sono UTC + 1 ora [ ora legale ]
Collection Yomn8wvn0 Gioiello Nude Sandali Donnaprimadonna Flat SzVpMU
Powered by phpBB® Forum Software © phpBB Group
Traduzione Italiana phpBBItalia.net basata su phpBB.it 2010
Privacy Policy  Cookie Policy